Experimental evidence for the mechanism of successive magnetic phase transitions in La2-

xSrxNiO4

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1994 J. Phys.: Condens. Matter 6 8023

(http://iopscience.iop.org/0953-8984/6/39/021)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.151 The article was downloaded on 12/05/2010 at 20:39

Please note that terms and conditions apply.

Experimental evidence for the mechanism of successive magnetic phase transitions in $La_{2-x}Sr_xNiO_4$

Yuji Furukawa† and Shinji Wada†‡

† Graduate School of Science and Technology, Kobe University, Nada, Kobe 657, Japan ‡ Department of Physics, Faculty of Science, Kobe University, Nada, Kobe 657, Japan

Received 19 April 1994, in final form 23 June 1994

Abstract. ¹³⁹La zero-field NMR measurements and NMR measurements under external magnetic fields in the layered perovskite compound $La_{2-x}Sr_xNiO_4$ (x = 0-1.3) have been carried out at low temperatures. With the Sr substitution three different ¹³⁹La resonances were observed as follows. In the antiferromagnetic (AF) state for $0 \le x \le 1.0$,

(i) zero-field NMR with a large internal magnetic field of ~ 18 kOe, whose intensity decreases linearly with x up to x = 1.0 and

(ii) NMR with $K \sim 0$ Knight shift and broad line-width (~ 4 kOe for x = 0.9), whose intensity increases rapidly in the region close to x = 1.0.

In the regions close to $x \sim 0$ and to $x \sim 1.0$, the relaxation rate T_1^{-1} of ¹³⁹La zero-field NMR and NMR under an external field is proportional to $T^{2.6}$ and to $T^{-2.7}$, respectively, corresponding to the 3D long-range order of antiferromagnetism (LOAF). In the paramagnetic state for x > 1.0,

(iii) NMR with $K \sim 0$ but rather sharp line-width (~ 2 kOe for x = 1.3). T_1^{-1} follows a Korringa-like relation, T_1T = constant, indicating a metallic state.

We concluded that in the insulative AF region $(0 \le x \le 1.0)$ the doped holes occupy mainly the Ni $3d_{z^2}$ orbital and, with increasing x, the LOAF state at $x \sim 0$ associated with Ni²⁺ (S = 1)spins translates to the LOAF state at $x \sim 1.0$ with Ni³⁺ $(S = \frac{1}{2})$ spins. On further substitution of Sr above $x \ge 1.0$, the excess holes should go into the $O 2p_{x,y}$ orbital in the Ni-O plane through the Ni $3d_{x^2-y^2}$ orbital, giving rise to the spin frustration of the Ni³⁺ $(S = \frac{1}{2})$ spins.

1. Introduction

Recently considerable experimental and theoretical attention have been concentrated on the layered perovskite compounds La_2MO_4 (M=3d transition-metal atoms), related to the family of high- T_c cuprate compounds, because the La_2MO_4 series has been found to be a good candidate to study systematically the effect of the 3d-electron correlation strength on characteristic properties such as the metal-insulator transition, magnetism, superconductivity and so on. This is due to mainly the fact that one can control the initial 3d-electron (hole) number, excess hole doping and two dimensionality without changing the K_2NiF_4 -type crystal structure.

All the hole non-doped samples, La_2CuO_4 (Cu^{2+} : $3d^9$, $S = \frac{1}{2}$), La_2NiO_4 (Ni^{2+} : $3d^8$, S = 1) and La_2CoO_4 (Co^{2+} : $3d^7$, $S = \frac{3}{2}$) are antiferromagnetic (AF) insulators [1-3]. A significant effect of the difference in the initial hole number appears in the successive phase transitions at low temperatures when excess holes are introduced by Sr substitution for La: $La_{2-x}Sr_xCuO_4$ goes into the superconducting (SC) state at $x \sim 0.05$ and to the paramagnetic

metal (PM) state at $x \sim 0.3$ [4], La_{2-x}Sr_xNiO₄ to PM at $x \sim 1.0$ [5] without SC appearance, and La_{2-x}Sr_xCoO₄ to the ferromagnetic state at $x \sim 0.6$ and to the paramagnetic state at $x \sim 1.1$ [6].

There is particular interest in $La_{2-x}Sr_xNiO_4$ at $x \sim 1.0$ since the formal valence of Ni⁺³ (d⁷) could take a low-spin configuration with $S = \frac{1}{2}$, equivalent to the $S = \frac{1}{2}$ spin state of Cu²⁺ in the high- T_c cuprate mother compound. An analysis of the iodometric titration by Kato *et al* [7] indicated that, on increasing x from 0 to 1.0, the valence number of Ni changes from +2 to +3. Demazeau *et al* [8] carried out an EPR experiment and concluded that Ni³⁺ is in the low-spin configuration. Kato *et al* [9] found the presence of a broad peak at $x \sim 1.0$ in the temperature dependence of magnetic susceptibility, characteristic of the two-dimensional AF correlation.

In order to understand the mechanism of the phase transition in the Sr-doped La₂NiO₄, however, it is important to know microscopically how the doped holes distribute to Ni 3d orbitals and/or O 2p orbitals over the initial hole occupation: for Ni²⁺ both $3d_{x^2-y^2}$ and $3d_{z^2}$ orbitals are occupied by approximately one hole each with parallel spins. From the x dependence of lattice parameters, Cava *et al* [10] suggested that the doped hole primarily goes into the $3d_{z^2}$ orbital up to $x \sim 0.5$ and then into the $3d_{x^2-y^2}$ orbital. An analysis of the magnetic susceptibility data [9] indicated that the doped hole occupies mainly the $3d_{z^2}$ orbital. In contrast, a photoemission spectroscopy study [11] concluded that the doped holes have mainly the O 2p character as in the case of La_{2-x}Sr_xCuO₄ [12], although the 3d character of the doped holes is much larger in La_{2-x}Sr_xNiO₄ than in La_{2-x}Sr_xCuO₄.

In the present study of ¹³⁹La zero-field nuclear magnetic resonance (zero-field NMR) and nuclear magnetic resonance (NMR) under an external field in $La_{2-x}Sr_xNiO_4$, we have obtained experimental evidence for the doped hole occupying the $3d_{z^2}$ orbital up to $x \sim 1.0$, giving rise to an $S = \frac{1}{2}$ long-range AF order in the region close to $x \sim 1.0$. On further substitution of Sr, exceeding $x \sim 1.0$, the doped hole would consequently occupy the $2p_{x,y}$ orbital of O, which is hybridized strongly with the Ni $3d_{x^2-y^2}$ orbital. This causes the abrupt transition from the insulative AF state with $S = \frac{1}{2}$ to the PM state.

2. Experimental results and analysis

2.1. Magnetization

The samples of $La_{2-x}Sr_xNiO_4$ compounds (x = 0-1.3) were prepared by the standard solid-state reaction method and annealed in air. X-ray powder diffraction patterns at room temperature show that all the samples are in a single phase of tetragonal structure (14/mmm). The dependence of c and a lattice parameters on the Sr content [5, 13] agrees qualitatively with that reported by Takeda *et al* [14].

The magnetic susceptibility χ of the samples with x = 0-1.3 showed almost the same temperature dependence as reported by Cava *et al* [10]. The magnitude of χ both at 4.2 K and at 300 K decreases monotonically with increasing x up to $x \sim 1.0$. We also measured the magnetization M as a function of the external magnetic field H at 4.2 K. As typically shown in figure 1 for x = 0.5 and x = 1.0, with increasing H, M increases linearly. The sample with x = 0.5 shows a considerable extent of residual magnetization at H = 0, suggesting the existence of a weak ferromagnetization. The inset in the figure shows the dependence of the residual magnetization M(H = 0) on x at 4.2 K, which takes a sharp maximum at x = 0.5.

Figure 1. The dependence of the magnetization in $La_{2-x}Sr_xNiO_4$ on the external magnetic field at 4.2 K: closed circles, x = 0.5; open circles, x = 1.0. The inset shows the x dependence of the residual magnetization M(H = 0) at 4.2 K.

Figure 2. The dependence of the ¹³⁹La zero-field NMR intensity on the Sr concentration x in the AF state in La_{2-x}Sr_xNiO₄ at 1.4 K. The inset shows the x dependence of $H_{\rm int}$ at the La site.

2.2. ¹³⁹ La zero-field nuclear magnetic resonance

2.2.1. Spectrum. ¹³⁹La zero-field NMR experiment has been carried out using a coherent-type spin-echo NMR spectrometer in the temperature range of T = 1.4-4.2 K. In the AF state, ¹³⁹La zero-field NMR spectra were observed, where the energy splitting of the nuclear-spin level of La atoms is dominated by the internal magnetic field originating from the Ni spins as reported in [13]. Figure 2 shows the x dependence of the zero-field NMR intensity in the AF region of x = 0-1.0 at 1.4 K. Here the observed intensity was normalized by the number of La nuclei in the sample, by longitudinal and transverse relaxation times and by the resonance frequencies. The inset in figure 2 shows the x dependence of the internal magnetic field H_{int} at the La site reported in our previous papers [5, 13]. With the increase of x, the zero-field NMR intensity decreases linearly but $H_{int} \sim 18$ kOe originating from the Ni²⁺ (S = 1) spin hardly changes up to $x \sim 1.0$. These results indicate that the number of La nuclei with the internal magnetic field associated with the Ni²⁺ spin decreases linearly with increases linearly with increases linearly with increase of x.

2.2.2. Spin-lattice relaxation time T_1 . To investigate dynamical properties of Ni²⁺ spins in the AF state, we have measured the temperature dependence of T_1 of the ¹³⁹La zero-field NMR for the samples with x = 0-0.9. T_1 for x = 0 and 0.2 was obtained by the ordinary single-saturation-RF-pulse method.

For x = 0, as reported previously [13], T_1^{-1} is extremely small at low T (~ $6.7 \times 10^{-3} \text{ s}^{-1}$ at 4.2 K) and proportional to $T^{2.6}$, corresponding to a three-dimensional (3D) long-range order of antiferromagnetism (LOAF) [15, 16]. For x = 0.2, T_1^{-1} is strongly enhanced (~ 14 s⁻¹ at 4.2 K) and the power of T diminishes drastically ($T_1^{-1} \propto T^{\sim 0.7}$). A similar augmentation of the T_1^{-1} value with Sr substitution was also observed in the La_{2-x}Sr_xCoO₄ compound [6].

For $x \ge 0.5$, the zero-field NMR intensities were too poor to deduce an accurate value of T_1 by the saturation-pulse method for the T_1 measurement. Then we tried to estimate the value of T_1 from the temperature dependence of the transverse relaxation time T_2 , utilizing

the relation [17]

$$1/T_2(T) = 1/T_2^* + a/T_1(T) \tag{1}$$

where T_2^* is the *T*-independent spin-spin relaxation time and was negligibly small in the present case. The experimental T_2 is defined as

$$M(2\tau) = M(0) \exp(-2\tau/T_2)$$
(2)

where $M(2\tau)$ is the spin-echo intensity focused at a time 2τ after the application of $\pi/2-\pi$ RF pulses separated by τ . Figure 3 shows a typical spin-echo decay behaviour of ¹³⁹La observed in the sample with x = 0.5 at 1.4 K (\bigcirc), 2.8 K (\square) and 4.2 K (\triangle). The value of M(0) at 1.4 K was obtained by a smooth extrapolation of the decay data to $\tau = 0$, and M(0)for higher temperatures was estimated assuming that M(0) varies in proportion to 1/T. As can be seen in the figure, the experimental data cannot be reproduced by (2), indicating that there is a distribution of T_2 value in the observed ¹³⁹La magnetization. Then tentatively we took three characteristic time constants $T_{1/10}$, $T_{2/10}$ and $T_{4/10}$, where $M(2\tau)$ decays to $\frac{1}{10}$, $\frac{2}{10}$ and $\frac{4}{10}$ of M(0), respectively. For the samples with x = 0.2 and 0.5, we confirmed that each time constant gives almost the same T dependence within our experimental uncertainty. Thus we found that, for x = 0-0.9, the T dependence of $(T_{1/10})^{-1}$ is roughly proportional to T^{α} in the range of T = 1.4-4.2 K.

3

Figure 3. Typical spin-echo decay curves of ¹³⁹La magnetization for x = 0.5: O, 1.4 K; \Box , 2.8 K; \triangle , 4.2 K.

Figure 4. The power dependence of ¹³⁹La T_1^{-1} on T, $T_1^{-1} \propto T^{\alpha}$, observed in the temperature range of T = 1.4-4.2 K: •, α obtained by T_1 measurement in ¹³⁹La zero-field NMR; O, α deduced from the temperature dependence of T_2 through the procedure described in the text; **I**, α obtained by T_1 measurement in ¹³⁹La NMR.

The open circles in figure 4 show the x dependence of α obtained through these procedures. The value of $\alpha = 0.9$ (O) for x = 0.2 is not very far from $\alpha = 0.7$ (\bullet) obtained by the T_1 measurement described above. With Sr substitution, α shows initially an abrupt drop and then a monotonic increase up to $x \sim 1.0$.

2.3. ¹³⁹ La nuclear magnetic resonance under external magnetic field

2.3.1. Spectrum. Figure 5 shows the NMR spectra observed for the samples with x = 0.7, 0.9, 1.0 and 1.3 at 1.7 K and 22 MHz as a function of the external magnetic field H. The Knight shift, K, is almost zero and independent of the Sr content, x. The inset in the figure shows the x dependence of the NMR intensity, normalized by a similar procedure as in the case of zero-field NMR intensity. An abrupt increase of the ¹³⁹La NMR intensity and significant narrowing of the line-width are observed with the increase of x through $x \sim 1.0$.

Figure 5. ¹³⁹La NMR spectra in La_{2-x}Sr_xNiO₄ with x = 0.7, 0.9, 1.0 and 1.3 observed at 1.7 K and $\nu = 22$ MHz. The inset shows the x dependence of ¹³⁹La NMR intensity at 1.7 K.

2.3.2. Spin-lattice relaxation time T_I . T_1 of ¹³⁹La NMR at 22 MHz was measured at the peak intensity point of the spectrum. In the case of ¹³⁹La $(I = \frac{7}{2})$, the magnetization recovery of the central $|\frac{1}{2}\rangle \Leftrightarrow |-\frac{1}{2}\rangle$ transition after a $\pi/2$ RF saturation pulse is given by [18]

$$\frac{[M(\infty) - M(t)]}{M(\infty)} = 0.013 \,\mathrm{e}^{-2Wt} + 0.068 \,\mathrm{e}^{-12Wt} + 0.206 \,\mathrm{e}^{-30Wt} + 0.714 \,\mathrm{e}^{-56Wt} \tag{3}$$

Figure 6. Temperature dependences of $T_{1(s)}^{-1}$ of ¹³⁹La NMR in La_{2-x}Sr_xNiO₄.

where M(t) is the magnetization at a time t after the saturating pulse and $2W = T_1^{-1}$. The equation, however, could not fit the experimental data. Then we tentatively assumed that the experimental recovery curve is composed of two components with slow and fast relaxation rates, $2W_s = T_{1(s)}^{-1}$ and $2W_f = T_{1(f)}^{-1}$, respectively; we carried out a fit using the following equation:

$$\frac{[M(\infty) - M(t)]}{M(\infty)} = M_s [0.013 e^{-2W_s t} + 0.068 e^{-12W_s t} + 0.206 e^{-30W_s t} + 0.714 e^{-56W_s t}] + M_f [0.013 e^{-2W_t t} + 0.068 e^{-12W_t t} + 0.206 e^{-30W_t t} + 0.714 e^{-56W_t t}]$$
(4)

where $M_s + M_f = 1$ and M_s gives the content of the slow relaxation component. Taking W_s , W_f and M_s as adjusting parameters, we obtained a better fit.

Figure 6 shows the temperature dependence of $T_{l(s)}^{-1}$ in the range of T = 1.7-4.2 K. The temperature dependences of $T_{l(f)}^{-1}$ are almost the same as those of $T_{l(s)}^{-1}$ and the ratio $M_s/M_f \sim 0.25$ hardly depends on the Sr concentration or the temperature. As typically

Figure 7. The recovery behaviour of ¹³⁹La magnetization, $[M(\infty) - M(t)]/M(\infty)$ plotted against tT: (a) for x = 1.3; (b) for x = 0.9; \bigcirc , 4.2 K; \times , 3.1 K; +, 1.7 K. The experimental uncertainty of each data point is ~ 0.01 .

shown in figure 7(a) for x = 1.3, $[M(\infty) - M(t)]/M(\infty)$ at 1.7 K, 3.1 K and 4.2 K plotted against tT is on the same recovery curve for x = 1.0, 1.1 and 1.3. Thus, for $x \ge 1.0$, we may conclude that T_1 roughly follows the Korringa-like relation of $T_1T = \text{constant}$ and the systems are in a metallic state. The values of $T_{1(s)}T$ are ~ 56 s K, ~ 77 s K and ~ 208 s K for x = 1.0, 1.1 and 1.3. respectively. The ratio W_f/W_s is ~ 51 , ~ 35 and ~ 35 , for x = 1.0, 1.1 and 1.3, respectively. For x = 0.9, on the other hand, T_1^{-1} does not follow the $T_1T = \text{constant}$ relation, as shown in figure 7(b), but varies as $T^{\sim 2.7}$.

We have to note that the present values of T_1T obtained at 22 MHz (36.5 kOe) for $x \ge 1.0$ are larger than the values obtained at 6 MHz (9.9 kOe) reported in [5]. The ratio $(T_1T(22 \text{ MHz}))/(T_1T(6 \text{ MHz}))$ is ~ 7.3 for x = 1.0 and ~ 4.3 for x = 1.3.

Under the low external magnetic field of ~ 10 kOe, one would have to take the effect of the quadrupole splitting v_Q on the relaxation rate for the $|\frac{1}{2}\rangle \Leftrightarrow |-\frac{1}{2}\rangle$ transition into account. If we tentatively use a value of quadrupole interaction $v_Q = 2.6$ MHz in the tetragonal phase of La₂NiO_{4+ δ} [13], the ratios of the decay constant corresponding to 2W and 56W in (3) are obtained as

$$\frac{2W(22 \text{ MHz})}{2W(6 \text{ MHz})} \sim 0.79 \qquad \frac{56W(22 \text{ MHz})}{56W(6 \text{ MHz})} \sim 0.90 \tag{5}$$

by a straightforward calculation of the rate equations. Thus this cannot explain the experimental $(T_1T)^{-1}$ enhancement appearing at low H.

3. Discussion

We first review briefly the NMR characteristics in La₂NiO₄ (x = 0) to facilitate understanding of the subsequent discussion (details are presented in [13]). In La₂NiO_{4+ δ}, the configuration of Ni²⁺ is 3d⁸, and both the 3d_{x²-y²} and the 3d_{z²} orbitals are occupied by one hole with parallel spins as illustrated in fugre 8(*a*). The internal field H_{int} at the La site is 17.8 kOe in

Figure 8. An illustration of the hole distribution, shown by arrows, on Ni orbitals: (a) the Ni²⁺ (S = 1) configuration, giving rise to a strong transferred exchange interaction between Ni $3d_{z^2}$ and La 6s orbitals through the $2p_z$ orbital of apical O; (b) the Ni³⁺ ($S = \frac{1}{2}$) configuration, where the transferred exchange interaction is almost quenched.

the AF state for the tetragonal crystal structure [13]. The large H_{int} could not be explained at all by the dipole field caused by the Ni²⁺ moment of $1.6\mu_B$ [19], but by the strong transferred exchange interaction between the Ni $3d_{z^2}$ orbital and the La 6s orbital through the $2p_z$ orbital of apical O [20]. Here, the existence of the half-filled $3d_{z^2}$ orbital plays an important role in the transferred exchange interaction.

3.1. Occupation of the doped hole in the insulative AF region

With Sr substitution for La in La₂NiO₄₊₅, we have found that the number of La nuclei with large H_{int} decreases linearly with increasing x without any significant variation of H_{int} up to $x \sim 1.0$. In the Sr concentration range of $0 \leq x \leq 1.0$, the resistivity at low temperatures increases insulatively with decreasing T [14]. Thus the doped holes should be localized and are considered to change from the Ni²⁺ ion (S = 1) to the Ni³⁺ ion with the low-spin configuration $(S = \frac{1}{2})$. In this ionic picture, the ratio of Ni²⁺/Ni³⁺ approaches unity at x = 0.5. Then one may expect that the system at x = 0.5 is in a ferrimagnetic-like state in which Ni²⁺ (S = 1) and Ni³⁺ (S = $\frac{1}{2}$) are arrayed alternately with antiparallel spin directions. A weak ferromagnetic component observed in the magnetization measurement, which takes a sharp maximum at x = 0.5, may correspond to this ferrimagnetic-like spin state.

If the doped hole occupied the Ni $3d_{x^2-y^2}$ orbital or the O $2p_{x,y}$ orbital in the Ni–O plane, which is hybridized strongly with the $3d_{x^2-y^2}$ orbital, the occupation of the $3d_{z^2}$ orbital by one hole would not change. Thus the transferred exchange interaction between the Ni $3d_{z^2}$ and the La 6s orbitals through the $2p_z$ orbital of the apical O remains unchanged [20] and H_{int} keeps its initial value of ~ 18 kOe at x = 0. In our preceding paper [13] we

8031

falsely concluded this. If this were the present case, however, the number of La nuclei with large H_{int} would not vary with the Sr doping, contradicting the experimental linear decrease in the ¹³⁹La zero-field NMR intensity shown in figure 2.

If the doped hole occupied the Ni $3d_{z^2}$ orbital, on the other hand, the orbital would be almost empty and, therefore, the transfer probabilities of the electrons with up and down spin from the apical O to the $3d_{z^2}$ orbital would be nearly equalized. Then the occupation of the doped hole on the $3d_{z^2}$ orbital would result in a quenching of the transferred exchange interaction (refer to figure 8(b)), giving rise to a very small internal magnetic field at La nuclei. As the ¹³⁹La resonance signal with small H_{int} is hard to detect by zero-field NMR measurement, the linear increase of the Ni³⁺ ions with Sr doping should result in a linear decrease in the ¹³⁹La zero-field NMR intensity with large H_{int} , in agreement with the present zero-field NMR experimental results. Thus we concluded that the doped holes occupy the Ni $3d_{z^2}$ orbital up to $x \simeq 1.0$ and quench the transferred exchange interaction between the La and Ni atoms.

3.2. Magnetic order of Nt^{3+} ($S = \frac{1}{2}$) spins in the region close to x < 1.0

Now we focus our interest on magnetic states associated with Ni³⁺ $(S = \frac{1}{2})$ ions at $x \le 1.0$, where most of the Ni atoms are considered to be Ni³⁺ ions with the $S = \frac{1}{2}$ low-spin configuration.

In the Sr concentration range of $x = \sim 0.7 - \sim 1.0$, we found ¹³⁹La NMR with almost zero Knight shift, though the system is still in the AF and insulative state. The broad line-width (~4 kOe for x = 0.9) decreases drastically when the system goes into the PM state through x = 1.0. As shown in figure 7, T_1^{-1} of ¹³⁹La NMR for x = 0.9 is proportional to $T^{\sim 2.7}$, which is close to the $T^{2.6}$ dependence in the LOAF state of La₂NiO₄ [13]. These results indicate that La_{2-x}Sr_xNiO₄ in the region close to $x \sim 1.0$ is in a LOAF state associated with Ni³⁺ ($S = \frac{1}{2}$) spins.

For the case of Ni³⁺ with the empty $3d_{x^2-y^2}$ orbital, the transferred exchange interaction is almost quenched. The magnetic dipole field at the La site originating from the Ni³⁺ $(S = \frac{1}{2})$ magnetic moment (~ $1\mu_B$) is evaluated to be ~ 1 kOe. Thus the ¹³⁹La NMR linewidth of ~ 4 kOe for the powder sample of x = 0.9 and 1.0 under the external magnetic field is considered to be composed of the dipole magnetic broadening (~ 2 kOe) and the electric quadrupole broadening (~ 2 kOe). The significant broadening of NMR line-width with decreasing x below $x \sim 0.9$ would be caused by the increase of the Ni²⁺ (S = 1) spins.

Following our consideration described above, the ¹³⁹La NMR intensity associated with the Ni³⁺ $(S = \frac{1}{2})$ spin should be proportional to x. As shown in figure 5, however, the NMR intensity seems to drop more rapidly on decreasing x from x = 1.0. The lack of the total NMR intensity in the small-x region is due to the missing of the weak signal at the tail parts of the spectrum because of the severe broadening of the ¹³⁹La NMR spectrum.

Thus we may conclude that, in the range close to $x \sim 0$, the system is in the LOAF state associated with Ni²⁺ (S=1) and, in the range close to $x \sim 1.0$, the system is in the LOAF state associated with Ni³⁺ (S = $\frac{1}{2}$).

In the intermediate region between $x \sim 0.2$ and $x \sim 0.7$, where the Ni³⁺ and Ni²⁺ ions distribute randomly, the long-range order of both the Ni²⁺ (S = 1) spins at x = 0and Ni³⁺ ($S = \frac{1}{2}$) spins at x = 1.0 is considered to be broken. As shown in flugre 4 the power dependence of T_1^{-1} on T, α , decreases from ~ 2.7 for LOAF down to ~ 0.7 in the intermediate AF region, which is indicative of the destruction of the long-range order. This is expected from the fact that one can observe a T-independent T_1^{-1} in an extreme case of the strong exchange interaction system above the ordering temperature. Thus the antiferromagnetism in the intermediate range of x = 0.2-0.7 is considered to be in short-range ordering.

3.3. Occupation of the doped holes at x > 1.0 and the metallic transition

For x = 0-1.0, as described in subsections 3.1 and 3.2, the doped holes occupy the Ni $3d_{z^2}$ orbital and $La_{2-x}Sr_xNiO_4$ at x = 1.0 is in the LOAF state associated with the Ni³⁺ ($S = \frac{1}{2}$) spins. On further substitution of Sr above $x \sim 1.0$, there is no way to occupy primarily any orbital other than the Ni $3d_{x^2-y^2}$, because the Ni $3d_{z^2}$ orbital is empty. Here following two cases are possible: (i) the doped hole localizes on the $3d_{x^2-y^2}$ orbital and the Ni³⁺ ion undergoes a transition to the Ni⁴⁺ (S = 0) ion; (ii) the doped hole occupies the O $2p_{x,y}$ orbital in the Ni–O plane, which is hybridized strongly with the $3d_{x^2-y^2}$ orbital.

In the former case, as the number of Ni⁴⁺ (S = 0) increases linearly with increasing x above x = 1.0, the transition from the insulating LOAF state to the PM state must be a slow and monotonic one.

In the latter case, on the other hand, the hole spin $(S = \frac{1}{2})$ in the $2p_{x,y}$ orbital orientates antiparallel with the neighbouring Ni spin $(S = \frac{1}{2})$, giving rise to spin frustrations. This destroys the AF order of Ni³⁺ $(S = \frac{1}{2})$ spins at a low hole doping of x - 1 as in the case of $La_{2-x}Sr_xCuO_4$ [21].

Above x = 1.0, as shown in the inset of figure 5, the ¹³⁹La NMR intensity observed at 1.7 K increases and quickly saturates with small Sr substitution. As x goes through $x \sim 1.0$, the $T_1^{-1} \propto T^{-2.7}$ (for x = 0.9) dependence of ¹³⁹La NMR, characteristic of the nuclear relaxation behaviour in the 3D LOAF state, changes drastically to the Korringa-like relation $T_1^{-1} \propto T$ as shown in figure 4. These results indicate that the AF order of Ni³⁺ $(S = \frac{1}{2})$ spins at $x \leq 1.0$ is destroyed suddenly and goes into the PM state for $x \ge 1.0$. Thus we may conclude that, for $x \ge 1.0$, the doped holes occupy mainly the O $2p_{x,y}$ orbital in the Ni–O plane and the phase transition at $x \sim 1.0$ is caused by the spin frustration of the Ni³⁺ ($S = \frac{1}{2}$) spins.

Two characteristic behaviours in the Korringa-like relaxation of ¹³⁹La are observed in the metallic state: (i) $(T_1T)^{-1}$ increases with decreasing x close to x = 1.0, similar to the x

Figure 9. A phase diagram of $La_{2-x}Sr_x NiO_4$ at low temperature. • and \bigcirc show the intensities of ¹³⁹La zero-field NMR and NMR under the external field, respectively. Solid lines are drawn as eye guides. The hatched areas located at $x \sim 0$ and at $x \sim 1.0$ indicate the LOAF associated with S = 1 (Ni²⁺) and $S = \frac{1}{2}$ (Ni³⁺) spins, respectively.

dependence of $(T_1T)^{-1}$ observed in the metallic state of $La_{2-x}Sr_xCuO_4$ [22] and (ii) $(T_1T)^{-1}$ increases on lowering the external magnetic field strength. Contribution from the thermal fluctuation of a few residual Ni²⁺ (S = 1) ions can be ruled out because the experimental T_1 values follow the Korringa-like relation, T_1T = constant, at both H = 9.9 kOe and H = 36.5 kOe. Thus these $(T_1T)^{-1}$ enhancements are considered to relate closely to spin fluctuations of the Ni³⁺ spins associated with the 2D AF correlation.

Finally, in figure 9, we show the phase diagram of $La_{2-x}Sr_xNiO_4$ at low temperatures confirmed by the present NMR study. The solid line shows the x dependence of ¹³⁹La zerofield NMR intensity, which corresponds to the number of Ni²⁺ ions. The solid curve shows the dependence of the ¹³⁹La NMR intensity on x. The phase transition from the AF insulator to the PM occurs at $x \sim 1.0$. Two hatched areas locating close to $x \sim 0$ and ~ 1.0 indicate. the long-range AF ordered state associated with S = 1 (Ni²⁺) spins and with $S = \frac{1}{2}$ (Ni³⁺) spins, respectively, where T_1^{-1} of ¹³⁹La is proportional to $T^{\sim 3}$. In the intermediate region between the hatched areas, the system is in the short-range AF ordered state.

Acknowledgments

The authors would like to express their thanks to Professor M Kaburagi for his valuable discussions. Thanks are also due to Dr Y Yamada for his kindness in measuring the dependence of the magnetization on the magnetic field.

References

- [1] Takagi H, Ido T, Ishibashi S, Uota M, Uchida S and Tokura Y 1989 Phys. Rev. B 40 2254
- [2] Gopalan P, McElfresh M W, Kakol Z, Spalek J and Honig J 1992 Phys. Rev. B 45 249 Nakajina K, Yamada Y, Hosoya S, Omata T and Endoh Y 1993 J. Phys. Soc. Japan 62 4438
- [3] Yamada K, Matsuda M, Endoh Y, Keimer B, Brigeneau J, Onodera S, Mizusaki J, Matuura T and Shirane J 1989 Phys. Rev. B 39 2336
- [4] Keimer B, Belk N, Birgeneau R J, Cassanho A, Chen C Y, Greven M, Kastner M A, Aharony A, Endoh Y, Erwin R W and Shirane G 1992 Phys. Rev. B 46 14034
- [5] Furukawa Y and Wada S 1992 J. Phys. Soc. Japan 61 1182
- [6] Furukawa Y, Wada S and Yamada Y 1993 J. Phys. Soc. Japan 62 1127
- [7] Kato M, Maeno Y and Fujita T 1991 J. Phys. Soc. Japan 60 1994
- [8] Demazeau G, Marty J L, Buffat B, Dance J M, Pouchard M, Dordor P and Chevalier B 1982 Mater. Res. Bull. 17 37
- [9] Kato M, Maeno Y and Fujita T 1991 Physica C 176 533
- [10] Cava R J, Batlogg B, Palstra T T, Krajewski J J, Peck W F Jr, Ramirez A P and Rupp L W Jr 1991 Phys. Rev. B 43 1229
- [11] Eisaki H, Uchida S, Mizokawa T, Namatame H, Fujimori A, van Elp J, Kuiper P, Sawtzky G A, Hosoya S and Katayama-Yoshida H 1992 Phys. Rev. B 45 12513
- [12] Fujimori A, Takayama-Muromachi E, Uchida Y and Oki B 1987 Phys. Rev. B 35 8814
- [13] Wada S, Furukawa Y, Kaburagi M, Kajitani T, Hosoya S and Yamada Y 1993 J. Phys. C: Solid State Phys. 5 765
- [14] Takeda Y, Kanno R, Sakano M, Yamamoto O, Takano M, Bando Y, Akinaga H, Takita H and Goodenough J B 1990 Mater. Res. Bull. 25 293
- [15] Moriya T 1956 Prog. Theor. Phys. 16 641
- [16] Chakravarty S, Gelfand M P, Kopietz P, Orbach R and Wollensak M 1991 Phys. Rev. B 43 2796
- [17] Walstedt R E 1967 Phys. Rev. Lett. 19 146
- [18] Narath A 1967 Phys. Rev. 162 320
- [19] Lander G H, Brown P J, Spalek J and Honig J M 1989 Phys. Rev. B 40 4463
- [20] Takahashi M, Nishino T and Kanamori J 1991 J. Phys. Soc. Japan 60 1365
- [21] Aharony A, Birgeneau R J, Coniglio A, Kastner M A and Stanly H E 1988 Phys. Rev. Lett. 60 1330
- [22] Kobayashi T, Wada S and Yamada Y 1990 Physica B 165&166 1299